
Pseudo-code for Shooting SM (Lower Level)
Module variables:
States: ALIGNING, RAMP_SPEED, SHOOT_BALL, QUERYINGSHOTSTATUS
Events Posted:

RunShootingSM
Takes ES_Event CurrentEvent, returns CurrentEvent

Set MakeTransition variable to false, because we are not making a
transition currently
Set state type variable NextState to CurrentState
Set event type EntryEventKind to ES_ENTRY (default to normal entry to
new state)
Set event type ReturnEvent to CurrentEvent

Switch (CurrentState)

Case ALIGNING
Execute During function for ALIGNING
If there is still an event to process (not ES_NO_EVENT)

Switch (Event)
Case: ES_ALIGNED

Set NextState to RAMP_SPEED
Set MakeTransition to true
Set ReturnEvent to ES_NO_EVENT

End Case
End Switch

End if
End Case

Case RAMP_SPEED

Call the DuringRAMP_SPEED function
Set CurrentEvent to returned event from during function
If there is still an event to process (not ES_NO_EVENT)

Switch (CurrentEvent)
Case ES_RAMPED

Set next state to SHOOT_BALL
Set MakeTransition to true
Set ReturnEvent to ES_NO_EVENT (consumed)

End Case
End Switch

End if
End Case

Case SHOOT_BALL
Call the DuringSHOOT_BALL function
Set CurrentEvent to returned event from during function
If there is still an event to process (not ES_NO_EVENT)

Switch (CurrentEvent)
Case ES_TIMEOUT

Set next state to QUERYINGSHOTSTATUS
Set MakeTransition to true
Set ReturnEvent to ES_NO_EVENT (consumed)

End Case
End Switch

End if
End Case

/* dealing with QueryingShotStatus state changes in during function*/

If MakeTransition is true (we are transitioning to a different
state)

Set the CurrentEvent to ES_EXIT
Call RunShootingSM with CurrentEvent
Set CurrentState to NextState
Call RunMasterSM with ES_ENTRY event (start the entry
function for the new state)

Endif
Return ReturnEvent
End RunMasterSM

StartShootingSM
Takes ES_EVENT Current Event, returns nothing

Initialize CurrentState to ENTRY_STATE, which is ALIGNING
Call RunShootingSM with Current Event (ES_ENTRY event)

DuringAligning ​(handles aligning to the beacon)
Takes event, returns event

If event is ES_ENTRY

Enable/unmask Beacon Detection interrupt on input capture
Call to set the turning direction as CW
Set turning speed by calling motor command with desire duty

Store the shooting active status
Store current shooting location

If team is green
Store green goal active status

Else if team is red
Store red goal active status

End if
Else if event is ES_EXIT

If exiting constructing state, give the lower levels a chance
to clean up first

Else
No lower level state machine to run
Do the activity that is repeated as long as we are in this

state

Endif
Return Event (this event is either an event that ConstructingSM needs
to handle, or ES_NO_EVENT if a lower level SM handled it)

DuringRAMPSPEED
Takes event, returns event

If event is ES_ENTRY

Call GoGoFlyWheel to start motor and related interrupts
Start a 5s framework timer to allow for the motor to ramp

Else if event is ES_EXIT
Nothing to do

Else
No lower level state machine to run
Do any activity that is repeated as long as we are in this

state
If EventType is ES_TIMEOUT AND EventParam is FlyRampTimer

Post ES_RAMPED to MasterSM
Endif

Return Event (this event is either an event that ConstructingSM needs
to handle, or ES_NO_EVENT if a lower level SM handled it)

DuringShootingBall
Takes event, returns event

If event is ES_ENTRY

Change PWM duty/period to make the crank-slider push out a ball
Start a framework called ShotsFired to fire in 2s

Else if event is ES_EXIT

If exiting constructing state, give the lower levels a chance
To clean up first

Else

No lower level state machine to run
Do any activity that is repeated as long as we are in this

state

Endif
Return Event (this event is either an event that ConstructingSM needs
to handle, or ES_NO_EVENT if a lower level SM handled it)

DuringQueryingShotStatus
Takes event, returns event

If event is ES_ENTRY

Post ES_QUERY to Comm

Else if event is ES_EXIT
If exiting constructing state, give the lower levels a chance
To clean up first

Call KillFlyWheel to turn off motor and speed control
Else

No lower level state machine to run

If number of cows = 0

Post ES_DRIVE_LOAD
Else If event is ES_TIMEOUT and param is CowResultWait

Post ES_QUERY to CommSM
Else if event is ES_RESPONSE_READY

If shooting location is still open and we have cows
Post ES_SHOOT to ShootSM to shoot again

Else drive to the next shooting location
ES_DRIVE_CHECKIN

 to end ShootingSM
End if

End if
Endif
Return Event (this event is either an event that ConstructingSM needs
to handle, or ES_NO_EVENT if a lower level SM handled it)

InitFlyInputCapture (initializes input capture to measure period
between encoder edges)
Takes nothing, returns nothing (3/02/17 afb)

Start by enabling the clock to the timer [regular timer 1A]
Enable the clock to Port ​F
Make sure timer (Timer ​1A​) is disabled before c onfiguring it
Set Timer ​1A​ up in 32-bit wide counter (individ ual, not concatenated)
mode
Use the full 32 bit count, so initialize the Interval load to
Oxffffffff Set up timer A in capture mode, for edge time, and
upcounting
To set event to both edges, write proper bits to T ​A​EVENT bits in
GPTMCTL. Trigger on rising edges
Now set up the port to do capture (clock was enabled earlier)

Start by setting the alternate function for Port ​F​ bit ​2
Then, map bit ​?​’s alternate function to T1CCP0 and select mux
value
Enable pin ​2​ on Port ​F​ to be an input
Enable timer for local capture interrupt Enable Timer ​1A​ in
Regular Timer ​1A​ in NVIC (Interrupt ​21​ so in EN ​0​ at bit ​21​)

Make sure interrupts are enabled globally
Wait to kick off timer to enable it and enable timer to stall while
stopped at debugger

End of InitFlyInputCapture

FlyInputCaptureResponse(an ISR to capture the times of rising and
falling edges of the encoder)
Takes nothing, returns nothing [as all ISRs should!] (1/18/17 afb)
Declare 32 bit local variable called ThisCapture
As always, start by clearing the source of the interrupt, the input
capture event
Grab the captured time value
Calculate the period
Add to array of 50 edges for averaging/smoothing
Update last capture to prepare for the next edge
Reset count in FlyWheelStopCheck one-shot
Create new event ThisEvent Set EventType of ThisEvent to ES_NewEdge
Post ThisEvent Event to SpeedCounter service
Return void

End of FlyInputCaptureResponse

InitBeaconDetect (initializes input capture for beacon finding)
Takes nothing, returns nothing

Enable Digital IN for BEACON on PD6
Set direction of pins to INPUT
Enable the interrupt event for PD6 rising edge
Enable interrupt in NVIC by writing to bit 8 in EN3
Change priority of event interrupt to 0. It is interrupt 104, so
PRI26

End of InitBeaconDetect

BeaconDetectResponse (ISR to stop turning when beacon has been
detected)
Takes nothing, returns nothing

Clear source of the interrupt
Increment BeacondDetected to keep track of how many pulses we got
If the Counter has reached the desired amount (to confirm that we are
aligned with the beacon)

Post ES_ALIGNED to MasterSM
Stop Motor
Mask the interrupt

Endif

End of BeaconDetectResponse

InitFlyControlPeriod (inits periodic interrupt timer for doing motor
control)

Takes nothing, returns nothing (3/2/17 afb)
Start by enabling the clock to the timer (Wide Timer ​4A​)
Kill a few cycles to let the clock get going
Make sure that timer (Timer ​4A​) is disabled bef ore configuring
Set it up in 32bit wide (individual, not concatenated) mode
Set up timer ​4A​ in periodic mode so that it rep eats the time-outs
Set timeout to 2mS
Enable a local timeout interrupt

Enable the Timer ​A​ in Wide Timer ​4​ interrupt in the NVIC
it is interrupt number ​102​ so appears in EN ​3​ at bit ​6
Set control priority lower than encoder priority by writing ​1​ to NVIC
priority register ​PRI25​ interrupt ​3
Make sure interrupts are enabled globally
Now wait to kick the timer off until we need it, but enable the timer
to stall while stopped by the debugger

End of InitFlyControlPeriod

FlyControlResponse (an ISR to execute the control law for flywheel
motor)
Takes nothing, returns nothing [as all ISRs should!] (3/2/17 afb)

Vars: STATIC float IntegralTerm, STATIC float RPMError, STATIC float
LastError, STATIC unsigned 32bit int ThisPeriod [TargetRPM set as
module level float]

Start by clearing the source of the interrupt

Implement control law

ThisPeriod equals Period
Calculate RPM by taking PER2RPM conversion divided by
ThisPeriod
Find RPMError by taking TargetRPM minus RPM
IntegralTerm equals Integral Term plus IntegralGain times
RPMError
IntegralTerm equals value clamped between 0 and 100 as
antiwindup
To be compatible with Zeigler Nichols Tuning, RequestedDuty
equals Kp*(RPMError + (IntegralTerm)) + Kd*(RPMError –
LastError)
Requested duty is clamped between zero and 100
LastError equals RPMError to update last error for next round

SetDuty of Channel ​??​ to RequestedDuty
Lower signal line P ​??​ to show end of execution
End of ControlResponse

TO DO:
Set min/max rpm in constants
Determine per2rpm conversion in response
Set requested duty with motor code

InitFlyWheelStopCheck (initializes a one-shot to check if the motor
has stopped)
ISR Init - Takes nothing and returns nothing

start by enabling the clock to the timer (Wide Timer 4)
 Loop until timer hardware is ready
 Disable timer B before configuring
 Configure timer for 32bit (individual instead of concatenated)
 Macro define 16bit refers to individual timer rather than

actual 16bit
 Set Timer a into one-shot mode (mask bits 0:1 and write value

for 1-shot mode = 0x01)
set timeout to 500 ms
Enable local timeout interrupt. (TBTOIM = bit 0 maybe not?)
Enable interrupt in NVIC register; we have interrupt 103 so
nvic_en3 bit 7
Change priority of one-shot to 2; we are using pri 25
Turn on interrupts globally

 set timer to stall in debugging. We will wait until the start
function to start the timer

FlyWheelStopCheck_ISR (ISR to fire if the flywheel has stopped s
ISR - Takes nothing, returns nothing

clear source of interrupt
Set RPM to zero
Clear values in the RPM calculation stream

**************************Private Functions*************************

clamp (a simple utility function to clamp value between to limits)
Takes an input val, a lower bound, and an upper bound, returns
clamped value (3/02/17 afb)

if val is greater than ClampHigh, val is too high, so:
return ClampHigh
if val is less than ClamLow, val is too low, so:
return ClampLow
otherwise return val because val is just right

PID ISR

ShootingState is the return value of QueryShootingSM
If ShootingState is RAMP_SPEED AND speed is > +/- 5% of desired
speed

Post ES_RAMPED to ShootSM

GoGoFlyWheel (utility function to activate motor and interrupt
function for the flywheel)
Takes nothing, returns nothing (afb 3/3/17)

Turn motor on
Enable interrupt for FlyInputCaptureResponse to detect encoder edges
and thereby
Enable interrupt for FlyWheelStopCheck to detect when wheel is
stopped

End of GoGoFlyWheel

KillFlyWheel (utility function to deactivate motor and interrupt
function for the flywheel)
Takes nothing, returns nothing (afb 3/3/17)

Turn motor off
Disable interrupt for FlyInputCaptureResponse to detect encoder edges
and thereby
Disable interrupt for FlyWheelStopCheck to detect when wheel is
stopped

End of KillFlyWheel

Right now, for simplicity we set a 5s timer for the flywheel to get
up to speed. If we want a more responsive system, we can implement an
event checker and flag that will be raised when the speed is within a
certain range of the desired.

/**
*
 Function
 GetFlySpeedState

 Parameters
 Nothing

 Returns
 boolean

 Description
 Public function to return a boolean if the motor is
 Notes

 Author
 Drew Bell, 03/03/17, 15:23

/

bool GetFlySpeedState(void) {

// add code
}

/**

 Function
 CheckFlyUp2Speed
 Parameters
 None
 Returns
 bool: true if a new event was detected
 Description
 Checks to see if the flywheel is up to speed
 Notes

 Author

 Drew Bell, 03/03/17, 13:48

*******/
bool CheckFlyUp2Speed(void)
{
 static uint8_t LastFlySpeedState = 0;
 uint8_t CurrentFlySpeedState;
 bool ReturnVal = false;

 CurrentFlySpeedState = GetFlySpeedState();
 // check for pin high AND different from last time
 // do the check for difference first so that you don't bother with
a test
 // of a port/variable that is not going to matter, since it hasn't
changed
 if ((CurrentFlySpeedState != LastFlySpeedState) &&
 (CurrentFlySpeedState == SPEED_CORRECT))
 { // event detected, so post detected event
 printf("speed correct, shooter ready /n/r");
 ReturnVal = true;
 }
 LastFlySpeedState = CurrentFlySpeedState; // update the state for
next time
*/
 return ReturnVal;

