

Pseudo-code for CommMasterSM (An HSM to handle SSI communication with
the LOC and pass information to the other services)

Module variables: CurrentCommand, LastCommand, ThisMessageType,
LastMessageType

Events: ES_GAME_START, ES_QUERY_GAME_STATUS, ES_SEND_REPORT, ES_ACK,
ES_NACK, ES_INACTIVE, ES_RECEIVE_REPORT

Defines: Clock defines, pin defines, Command defines: 0 = Status, 1 =
SendReport, 2 = QueryReportResult

InitCommMasterSM
Takes a priority number, returns True.

Initialize the MyPriority variable with the passed in parameter
Set EventType of ThisEvent as ES_ENTRY
Run StartCommMasterSM with parameter ThisEvent
Return True

RunCommMasterSM
Takes ES_Event, returns ES_Event

Assign false to MakeTransition
Set Currentstate equal to the CommMasterState NextState
Assign ES_Event EntryEvenKind the EventType of ES_Entry and param of
0, which defaults to normal entry to new state
Assign ES_Event ReturnEvent the EventType of ES_NO_EVENT and param of
0, which assumes no error

Switch

Case QueryGameStart
/*Execute during for state 1 to. ES_ENTRY and ES_EXIT are
run here to access lower level SM to remap or consume
event*/
CurrentEvent equals DuringQueryGameStart
If current event doesn’t equal ES_NO_EVENT

Switch

ES_EVENT is ES_GAME_START
NextState equals GameChat
MakeTransition equals true
Break

End if
break

Case GameChat

CurrentEvent equals DuringGameChat
If current event doesn’t equal ES_NO_EVENT

Switch
Case: ES_Event is ES_QUERY

NextState equals GameChat
MakeTransition equals true
Break

Case: ES_Event is ES_SEND_REPORT
//do we deal with these here

Case: ES_Event is ES_REPORT_RECEIVED
//do we deal with these here

Break

End if
Break

If MakeTransition equals true

EventType of CurrentEvent is ES_EXIT
RunCommMasterSM with parameter CurrentEvent
CurrentState equals nextstate
RunCommMasterSM with parameter EntryEventKind

End if

Return ReturnEvent

StartMasterSM (ES_Event CurrentEvent)
Takes a ES_Event, returns nothing

Since there is more than 1 state to the top level machine, initialize
CurrentState to QueryGameStart
Now we need to let the Run function init the lower level state
machines. Use LocalEvent to keep the compiler from complaining about
unused var
Run RunCommMasterSM
Return

Comm_PeriodicQuery_Init
Take nothing return nothing

Start by enabling the clock to the timer (Wide Timer 0)
Kill a few cycles to let the clock get going
Make sure that timer (Timer B) is disabled before configuring
Set it up in 32bit wide (individual, not concatenated) mode
Set up timer B in periodic mode so that it repeats the time-outs
Set timeout to 500mS
Enable a local timeout interrupt
Enable the Timer B in Wide Timer 0 interrupt in the NVIC. it is
interrupt number 95 so appears in EN2 at bit 31
Make sure interrupts are enabled globally
Now kick the timer off by enabling it and enabling the timer to stall
while stopped by the debugger
Edit interrupt priority register to make the periodic timer interrupt
priority 2
End of Comm_Query_Init

Comm_PeriodicQuery_ISR
Takes nothing return nothing

Start by clearing the source of the interrupt
Locally enable interrupts (TXIM in SSIIM)
End of Comm_ PeriodicQuery_ISR

QueryGameStatus (a helper function to write query and keep track of
last Command)

Takes nothing, returns nothing

LastCommand is 0 for querying game status

Query game status from the slave by writing 0b1100 0000 followed by 4
bytes of 0x00
Locally enable interrupts for EOT
End of QueryGameStatus

SendFreqReport
Takes an unsigned 8 bit int, returns nothing

LastCommand is 1 for sending frequency response
Freq equals the passed in int
Freq equals freq masked to keep only the 4 LSB

Send 0b1000 0000 OR’d with Freq
Locally enable EOT interrupt
End of SendFreqReport

QueryReportResponse
Takes nothing, returns nothing

LastCommand [relates to whether last command was game status, send
report, or report response]

Module defines:
GameStatus = 0
SendReport = 1
ReportResponse = 2

**************private functions*******************
DuringQueryGameStart
Takes ES_Event, returns static ES_Event

ReturnEvent equals the passed in Event
If EventType of Event is ES_ENTRY or ES_ENTRY_HISTORY

//Implement any entry actions required for this state machine
// after that start any lower level machines that run in this
state
(No lower level machines to run)

End if

Else if EventType of Event is ES_EXIT

No lower level SMs to clean up
//any local exit functionality for QueryGameStart state

End else if

Else

//Do the during function for this state
Query Game Status
If game status has changed

Post ES_GAME_START
End if

End else

Return Return Event

DuringGameChat
Takes ES_Event, returns static ES_Event

ReturnEvent equals the passed in Event
If EventType of Event is ES_ENTRY or ES_ENTRY_HISTORY

//Implement any entry actions required for this state machine
// after that start any lower level machines that run in this
state
Pass Event to StartWaiting2MS
Pass EVent to StartCommActive

End if

Else if EventType of Event is ES_EXIT
Pass Event to RunWaiting2MS
Pass Event to RunCommActive
//any local exit functionality for GameChat state?

End else if

Else (do the during function for this state)

Run lower level state machines
Return Event equals RunWaiting2MS
Return Event equals RunCommActive
//Do any activity that is to be repeated as long as we are
in this state

End if

End else

Return Return Event

Pseudo-code for GameChatSM (A flat SM to manage the communication and
2ms waiting time)

Switch based on CurrentState

Case GameStatus
Pull off first two bytes of 0x00 and 0xFF
Save 3rd byte off FIFO as Status Byte 1
Save 4rd byte off FIFO as Status Byte 2
Save 5rd byte off FIFO as Status Byte 3

Case SendReport
Pull off all 5 bytes, which have no meaning

Case ReportResponse
Pull off first two bytes of 0x00 and 0xFF
Save 3rd byte to Response Ready
Save 4th byte to Report Status
Pull 5th byte of 0x00 off the stack

RunGameChatSM
Takes ann ES_Event CurrentEvent and returns an ES_Event

Set make transition equals false
Set GameChatState NextState to CurrentState
Initialize EntryEventKind to normal entry to state
Initialize ReturnEvent to Current Event, assuming no consuming

Switch based on CurrentState

Case Waiting2MS
Current event is result of CurrentEvent passed to
DuringWaiting2MS
If EventType of CurrentEvent is not ES_NO_EVENT

Switch based on CurrentEvent.EventType
Case 2ms_Timer_Expired

NextState equals CommActive
MakeTransition equals true
EntryEventKind

Consume event by setting EventType of
ReturnEvent to ES_NO_EVENT
break

End if
Else

Return event equals currentstate because current
event is now ES_NO_EVENT

End else
Break

If make transition equals true
EventType of CurrentEvent is ES_EXIT
RunGameChatSM with parameter as CurrentEvent
CurrentState equals NextState
RunGameChatSM with parameter as EntryEventKind

End if

Return ReturnEvent

StartGameChatSM
Takes an ES_Event CurrentEvent, returns nothing

If ES_ENTRY_HISTORY not equal to EventType of CurrentEvent

Set CurrentState equal to ENTRY_STATE
End if

RunGameChatSM with parameter as CurrentEvent
End of StartGameChatSM

DuringWaiting2MS
Takes an ES_Event Event, returns ES_EVENT

Set ES_Event ReturnEvent equal to Event
If EventType of Event is not ES_ENTRY or ES_ENTRY_HISTORY

//implement entry actions for this state machine
(no lower level SM to run)

End if

Else if EventType of Event is ES_EXIT

(no lower level states to run clean up)
//Do any local exit functionality

End if

Else do the during function for this state

(no lower level SM to run)
//do any activity to is repeated as long as we are in this

state
End if

Return ReturnEvent

DuringCommActive
Takes an ES_Event Event, returns ES_EVENT

Set ES_Event ReturnEvent equal to Event
If EventType of Event is not ES_ENTRY or ES_ENTRY_HISTORY

//implement entry actions for this state machine
(no lower level SM to run)

End if

Else if EventType of Event is ES_EXIT
(no lower level states to run clean up)
//Do any local exit functionality

End if

Else do the during function for this state

(no lower level SM to run)
//do any activity to is repeated as long as we are in this

state

//add content here

End if

Return ReturnEvent

2 ms one shot safety timer init
Takes nothing and returns nothing

start by enabling the clock to the timer (Wide Timer 1)
 Loop until timer hardware is ready
 Disable timer A before configuring
 Configure timer for 32bit (individual instead of concatenated)
 Macro define 16bit refers to individual timer rather than

actual 16bit
 Set Timer a into one-shot mode (mask bits 0:1 and write value

for 1-shot mode = 0x01)
set timeout to 2 ms
Enable local timeout interrupt. (TATOIM = bit 0 maybe not?)
Enable interrupt in NVIC register; we have interrupt 96 so

nvic_en3
Change priority of one-shot to 0; we are using pri 24
Turn on interrupts globally

 set timer to stall in debugging. We will wait until the start
function to start the timer

2 ms one shot ISR

clear source of interrupt
Go to CommActive state by posting the 2ms_Timer_Expired event
to comm service (

GetGreenCheckInShoot
Return bit 7 of Status Byte 1
End of GetGreenCheckInShoot

GetGreenActiveArea
Return bits 4-6 of Status Byte 1
End of GetGreenActiveArea

GetGreenScore
Return bits 0-5 of Status Byte 2
End of GetGreenScore

GetRedActiveArea
Return bit 0-2 of Status Byte 1
End of GetRedActiveArea

GetRedCheckInShoot
Return bit 3 of Status Byte 1

End of GetRedCheckInShoot

GetRedScore
Return Bits 0-5 of Status Byte 3
End of GetRedScore

GetGameStatus
Return by 7 of Status Byte 3
End of GetGameStatus

GetResponseReady
Return bits 0-7 of Response Ready Byte
End of GetResponseReady

GetReportResponse
Return bits 6-7 of Report Status Byte
End of GetReportResponse

GetNextLocation
Return bits 0-3 of Report Status Byte
End of GetNextLocation

